Rank Frequencies for Quadratic Twists of Elliptic Curves
نویسندگان
چکیده
We give explicit examples of infinite families of elliptic curves E over Q with (nonconstant) quadratic twists over Q(t) of rank at least 2 and 3. We recover some results announced by Mestre, as well as some additional families. Suppose D is a squarefree integer and let rE(D) denote the rank of the quadratic twist of E by D. We apply results of Stewart and Top to our examples to obtain results of the form #{D : |D| < x, rE(D) ≥ 2} x #{D : |D| < x, rE(D) ≥ 3} x for all sufficiently large x.
منابع مشابه
A Note on Twists of (y^2=x^3+1)
‎‎In the category of Mordell curves (E_D:y^2=x^3+D) with nontrivial torsion groups we find curves of the generic rank two as quadratic twists of (E_1), ‎and of the generic rank at least two and at least three as cubic twists of (E_1). ‎Previous work‎, ‎in the category of Mordell curves with trivial torsion groups‎, ‎has found infinitely many elliptic curves with ...
متن کاملThe rank of hyperelliptic Jacobians in families of quadratic twists
The variation of the rank of elliptic curves over Q in families of quadratic twists has been extensively studied by Gouvêa, Mazur, Stewart, Top, Rubin and Silverberg. It is known, for example, that any elliptic curve over Q admits infinitely many quadratic twists of rank ≥ 1. Most elliptic curves have even infinitely many twists of rank ≥ 2 and examples of elliptic curves with infinitely many t...
متن کاملTwists of elliptic curves of rank at least four
We give infinite families of elliptic curves over Q such that each curve has infinitely many non-isomorphic quadratic twists of rank at least 4. Assuming the Parity Conjecture, we also give elliptic curves over Q with infinitely many non-isomorphic quadratic twists of odd rank at least 5.
متن کاملRank 0 Quadratic Twists of a Family of Elliptic Curves
In this paper, we consider a family of elliptic curves over Q with 2-torsion part Z2. We prove that, for every such elliptic curve, a positive proportion of quadratic twists have Mordell–Weil rank 0. Mathematics Subject Classifications (2000). 11G05, 11L40, 14H52.
متن کاملCongruences between Heegner Points and Quadratic Twists of Elliptic Curves
We establish a congruence formula between p-adic logarithms of Heegner points for two elliptic curves with the same mod p Galois representation. As a first application, we use the congruence formula when p = 2 to explicitly construct many quadratic twists of analytic rank zero (resp. one) for a wide class of elliptic curves E. We show that the number of twists of E up to twisting discriminant X...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental Mathematics
دوره 10 شماره
صفحات -
تاریخ انتشار 2001